Novel resistance functions uncovered using functional metagenomic investigations of resistance reservoirs
نویسندگان
چکیده
Rates of infection with antibiotic-resistant bacteria have increased precipitously over the past several decades, with far-reaching healthcare and societal costs. Recent evidence has established a link between antibiotic resistance genes in human pathogens and those found in non-pathogenic, commensal, and environmental organisms, prompting deeper investigation of natural and human-associated reservoirs of antibiotic resistance. Functional metagenomic selections, in which shotgun-cloned DNA fragments are selected for their ability to confer survival to an indicator host, have been increasingly applied to the characterization of many antibiotic resistance reservoirs. These experiments have demonstrated that antibiotic resistance genes are highly diverse and widely distributed, many times bearing little to no similarity to known sequences. Through unbiased selections for survival to antibiotic exposure, functional metagenomics can improve annotations by reducing the discovery of false-positive resistance and by allowing for the identification of previously unrecognizable resistance genes. In this review, we summarize the novel resistance functions uncovered using functional metagenomic investigations of natural and human-impacted resistance reservoirs. Examples of novel antibiotic resistance genes include those highly divergent from known sequences, those for which sequence is entirely unable to predict resistance function, bifunctional resistance genes, and those with unconventional, atypical resistance mechanisms. Overcoming antibiotic resistance in the clinic will require a better understanding of existing resistance reservoirs and the dissemination networks that govern horizontal gene exchange, informing best practices to limit the spread of resistance-conferring genes to human pathogens.
منابع مشابه
The human microbiome harbors a diverse reservoir of antibiotic resistance genes.
The increasing levels of multi-drug resistance in human pathogenic bacteria are compromising our ability to treat infectious disease. Since antibiotic resistance determinants are readily exchanged between bacteria through lateral gene transfer, there is an increasing interest in investigating reservoirs of antibiotic resistance accessible to pathogens. Due to the high likelihood of contact and ...
متن کاملFunctional Metagenomic Investigations of the Human Intestinal Microbiota
The human intestinal microbiota encode multiple critical functions impacting human health, including metabolism of dietary substrate, prevention of pathogen invasion, immune system modulation, and provision of a reservoir of antibiotic resistance genes accessible to pathogens. The complexity of this microbial community, its recalcitrance to standard cultivation, and the immense diversity of its...
متن کاملFunctional metagenomic analysis reveals rivers are a reservoir for diverse antibiotic resistance genes.
The environment harbours a significant diversity of uncultured bacteria and a potential source of novel and extant resistance genes which may recombine with clinically important bacteria disseminated into environmental reservoirs. There is evidence that pollution can select for resistance due to the aggregation of adaptive genes on mobile elements. The aim of this study was to establish the imp...
متن کاملIdentification of Aminoglycoside and β-Lactam Resistance Genes from within an Infant Gut Functional Metagenomic Library
The infant gut microbiota develops rapidly during the first 2 years of life, acquiring microorganisms from diverse sources. During this time, significant opportunities exist for the infant to acquire antibiotic resistant bacteria, which can become established and constitute the infant gut resistome. With increased antibiotic resistance limiting our ability to treat bacterial infections, investi...
متن کاملFunctional Metagenomics to Study Antibiotic Resistance.
The construction and screening of metagenomic expression libraries has great potential to identify novel genes and their functions. Here, we describe metagenomic library preparation from fecal DNA, screening of libraries for antibiotic resistance genes (ARGs), massively parallel DNA sequencing of the enriched DNA fragments, and a computational pipeline for high-throughput assembly and annotatio...
متن کامل